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Abstract: This article presents a study on the dimensional accuracy of the thin shafts obtained 

by the Fused Deposition Modelling process. The study is based on the execution of a number 

of 27 specimens with various values of the parameters: layer thickness, H/D ratio, infill 

density. These combinations of values were established according to a Taguchi plan. 

The specimens were modeled in CatiaV5, then the Z-Suite software generated the codes for 

printing by the Zortrax M200 3D printer. Z-ABS was used as the material. After testing, these 

were post-processed and measured. 

The data were analyzed with the MiniTab software and with the Artificial Neural Networks 

Toolbox from MATLAB. 
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1. Introduction 

Additive Manufacturing is a new technology, opposed to Subtractive Manufacturing and allows the 

production of parts with complex shapes and structures. 

The filament material passes through an extrusion head and is heated to near its melting point. This 

material is then removed through the end of the head and stored on the machine table in the form of a 

single material wire; these "threads" are deposited one after another to create the layer. Once the layer 

is completed, the construction table descends by one layer and the process continues until the next 

layer is completed [MOH 16]. Parts with downward facing surfaces require substantial support. While 

in other processes these supports are automatically generated, in the case of FDM material other than 

the part is used. The material is a plastic (ABS, PLA etc), and the parts built during the process have a 

resistance of 80% of that of the original material. Other materials include wax, medical ABS and an 

elastomer [KRI 06], [KAR 14], [KHA 05] and [TSO 16]. 

Advantages: good accuracy, functional materials, medium range of materials, easy maintenance, 

topological optimization, multi-material parts, customized table, reinforced part. 

Disadvantages: support material. 
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The FDM technology is very complex, based on thermomechanical processes, on high speed and 

precise displacements [KUN 14]. This complexity causes FDM technology to have a number of 

problems that are still unclear, like: clogged extruder, layer shifting, weak infill, grinding filament, 

material stringing, overheating, inconsistent extrusion and so on. 

In ours experiments we found some problems of dimensional accuracy on the parts realized by FDM. 

In order to determine the dimensional accuracy of the thin shafts obtained by FDM process, an 

experiment was made at University of Pitești, in the laboratory of Product design and development. 

 
Figure 1. 3D Printing process 

 

2. The specimens used in the study 
The drawing of the specimens is presented in Figure 2. 

  
Figure 2. Drawing of the specimens 

 

The 3D specimen is realized with Catia V5 software and after then the 3D model is imported in Z-

Suite software in order to generate the code for the 3D Printer ZORTRAX M200, figure 3. 



3 

 

 
Figure 3. Z-Suite software 

 

3. Analysis and results 

 
3.1. Planning and data analysis with Minitab 

With Minitab software we created a Taguchi plan for experimentation. This plan has 3 factors and for 

each factor exist 3 levels. Based on Taguchi plan, a number of 27 specimens was realized. The 

following parameters were chosen as inputs: layer thickness, H/D ratio, infill density and the output 

was the diameter measured on the top of the shaft, table 1. 

Table 1. Dataset for the experiment 

 

Exp. no. 
Layer thickness 

(mm) 
H/D Ratio Infill density (%) Diameter (mm) 

1.  0,09 5 10 4,09 

2.  0,09 5 10 4,08 

3.  0,09 5 10 4,08 

4.  0,09 10 50 4,10 

5.  0,09 10 50 4,11 

6.  0,09 10 50 4,11 

7.  0,09 15 90 4,15 

8.  0,09 15 90 4,16 

9.  0,09 15 90 4,16 

10.  0,19 5 50 4,11 

11.  0,19 5 50 4,12 

12.  0,19 5 50 4,13 

13.  0,19 10 90 4,14 

14.  0,19 10 90 4,14 

15.  0,19 10 90 4,13 

16.  0,19 15 10 4,19 

17.  0,19 15 10 4,21 

18.  0,19 15 10 4,21 

19.  0,14 5 90 4,09 

20.  0,14 5 90 4,09 

21.  0,14 5 90 4,11 

22.  0,14 10 10 4,14 

23.  0,14 10 10 4,13 

24.  0,14 10 10 4,14 

25.  0,14 15 50 4,18 

26.  0,14 15 50 4,17 

27.  0,14 15 50 4,18 
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A regression analysis was realized: Diameter versus Layer height; Rapport H/D, Figure 4.  

 

 
Figure 4. Rapport of regression analysis generated by Minitab software 

 

3.2. Data analysis with Artificial Neural Network Toolbox in MATLAB 

The data was imported into the MATLAB Artificial Neural Network Toolbox. 

For the inputs of the network we created a matrix of 3x27 (Layer height, H/D Ratio and Infill density), 

and for the output of the network a matrix (vector) of 1x27 (Diameter) were created. 

In order to train, test and validate the network, we divided the 27 data sets into 3 categories: 70% for 

training, 15% for testing and 15% for validation. 

The Neural Network Fitting Tool was chosen because this tool has the possibility to randomly 

distribute the data sets in the three categories. 

The network was trained using the “Bayesian-Regularization” backpropagation algorithm (ANG 19), 

figure 6. This process is an iterative one, in this case, to train the network a number of 614 iterations 

was required. 
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Figure 6. Training the neural network 

 

When the training process is considered completed, the results are displayed in the Train Network 

window. The values for R and the mean square error are displayed. 

 

 
Figure 7. The results of network training, testing and validation 

 

After the training, the network can be used by the designer “to ask” for advice in order to "simulate" 

new parameters. 
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Thus, we will introduce a new set of input data, corresponding to a new situation and thus we will be 

able to find the answer given by the network. 

 

Table 2. New parameters simulated with RNA 

INPUT 

Layer thickness (mm) 0,09 

H/D Ratio 5 

Infill density (%) 20 

OUTPUT 

Diameter (mm) 4,0827 

 

 

4. Conclusions 

The diameter of the thin shafts obtained by FDM process depends on the parameters layer thickness, 

H/D ratio and infill density. 

A regression equation was established after regression analysis: Diameter = f (parameters). 

With Artificial Neural Network Toolbox in MATLAB was realized the data analyses.  

The network was trained, tested and validated using the results of measurements.  

After the training, the network can be used by the designer “to ask” for advice in order to "simulate" 

new parameters. Thus, we will introduce a new set of input data, corresponding to a new situation and 

thus we will be able to find the answer given by the network. 

In this study, we found, for thin shafts obtained by FDM, that a large influence on the dimensional 

accuracy has the thickness of the printed layer, and a small influence has the filling density. 

For the range of values analyzed for the H / D ratio, the dimensional accuracy is not significantly 

influenced. 

In the experiment we tried to obtain specimens with layer thicknesses of 0.29 mm and 0.39 mm, 

respectively, but these were practically impossible to achieve because the cylindrical structure became 

unstable because it had an insufficient number of layers in the cross section of the shaft. 
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